P4 Controller Manual

Now Including Biometric Support

Progeny
 access Contral

Product Description
Codes

4001-5A	Single Door P4 Controller with 12V 5 A Charger PSU
4001D-5A	Two Door P4 Controller with 12V 5 A Charger PSU
4006-5A	Single Door P4 Controller with 12V 5 A Charger PSU + GPRS Interface
4006D-5A	Two Door P4 Controller with 12V 5 A Charger PSU + GPRS Interface
$\mathbf{4 0 0 3}$	Single Door P4 Controller with 12V 1 A PSU + Ethernet Interface \& POE Splitter
$\mathbf{4 0 0 3 - 1 7}$	Single Door P4 Controller with 12V 1.7 A PSU + Ethernet Interface \& POE Splitter

Table of Contents

QUICK START PROCEDURE 4
OTHER QUICK STARTS 4
INTRODUCTION 5
PROGRAMMING 8
PROGRAMMING FLOW DIAGRAMS 8
USER MENU 9
ACCESS CODE 10
CARDS \& FOBS 11
ENGINEER MENU 18
RESTORING FACTORY SETTINGS 33
INSTALLATION 43
LOCK \& RELAY B 47
INPUTS 50
KEYBOARD 51
CARD READERS 52
NETWORKING 52
ALARMS 56
INTERLOCKING 56
SPECIFICATION 57
USER FORMATS 59

Progeny
 access Contral

Quick Start Procedure

To quickly set up and test your controller follow this procedure. The examples given are for a P4 Controller connected to P4 Readers and using P4 Cards. You may need to adapt the settings for the readers you are using.

Wiring

1. Connect the reader to the controller
2. Connect the mains supply to the controller
3. Switch on the supply

Programming

Once all the connections are made, the following procedure will allow you to test a Card.

1. Press * \& \# on the keyboard at the same time to unlock the keyboard
2. Use the Discover Card (see User menu 02) Enter: * $654321^{*} 02$
3. Now present the required cards or fobs to the reader one after then next.
4. Press the \# key to finish.

Testing

Now test by presenting the card you enabled to the reader: The reader LED will turn green and the lock relay will open for 3 seconds.
Note: if you are using a reader other than P4 you may need to set correct card technology (see Engineer menu 04 and 05)

Other Quick Starts

Other quick tests you can try are:
Request to Exit
Temporarily short the RQE input to OV. This simulates a Request to exit button Push and will operate the lock output for 3 seconds

Access Code

1. Unlock the keyboard by pressing * \& \# keys at the same time
2. Enter*654321*01
3. Enter 7890 \#

An access code of 7890 has now been programmed. Enter 7890 at the keyboard and the lock will release for 3 seconds.

Introduction

This manual covers the Progeny P4 range of access controllers. These work with Doors Enterprise management software. For best results we recommend using V8.00 or later.
The POE controllers are only available as single door. All controllers feature interfaces for:

- Lock Drive (Electronic \& Relay switched)
- Two Readers
- Keyboard, Request to Exit
- Door Monitor
- Interlock
- RS 485 network
- Engineer Programming Keyboard

IP Addressable

The IP settings such as IP Address, Gateway Address and Subnet Mask can be programmed from the front panel of each P4.net controller. (See Engineer functions 80 to 84).

Online or Stand Alone

The P4 access control system is designed to be an online system centrally programmed via the Doors Enterprise software. However, the controllers can also be programmed to operate stand-alone via the on-board keyboard. This gives flexibility when installing a system to confirm correct operation without the need for a PC.

Time \& Date

Each controller has a real time clock and non-volatile event memory to allow for the system to continue operation even when isolated from the PC or remainder of the network.

Communication

The P4 Controllers can connect via a USB Adaptor or via the P4.Net controllers using the LAN or WAN to distribute information to multiple sites or remote parts of the system.

Progeny

Indicators

Status LED's can be found on the front panel of the controller and repeated at the keyboard and card readers. These indicators have the following meanings.

Keypad	Meaning
Status LED	Normal
Off	Lock released
On	Programming Mode
Flashing	

$\begin{gathered} \text { READER } \\ \text { "A" \& "B" LED's } \end{gathered}$	Meaning
Off	Normal
On	Lock released
2 Flashes	Anti-pass back
3 Flashes	Card not registered
4 Flashes	Invalid card
5 Flashes	Card out of valid period
6 Flashes	Access Level Time Zone
7 Flashes	Reader Error

Sound

Sound is used to give the user additional feedback on the status of the controller and progress during programming.

Sound	Meaning
Continuous Two Tone, High Volume	PDO Alarm
Four Notes "Low - High - Low - High"	Programming Mode
Two Notes "Low - High"	Confirm Programming Change
Two Notes "High - Low "	Programming Error
Single Short Note "High"	Keyboard Key Push
3 long Beeps	Card not Registered (No Card Pack)
4 short Beeps	Card Registered but not enabled.
Tic Tic Tic	Memory Programming in progress

Note: The sounds from the keyboard controller can be annoying if located in earshot. To mute the onboard sounder, press \# \& 5 together. However, the sounder will re-activate when the * key is pressed. Note that this will not mute the PDO alarm sound.

Alarms

PDO
The "Prolonged Door Open" (PDO) or "Door Failed to Close" alarm acts as a reminder that a door is a security door and should not be wedged or held open for too long. If the door sensor has been connected then each time the door is detected opening the PDO timer starts. If this timer reaches a preset value before the door closes, a two-tone PDO alarm will be heard from the keyboard and the PDO output will activate. At the controller keyboard press keys \# and 3 simultaneously to mute the current two tone sound from the controller.

PDO alarm cancels automatically when the door is closed. The PDO alarm is not active if the door is open due to Toggle mode.

Door Forced

The operation of the door forced alarm depends on the ability of the controller knowing when the door has been opened legitimately or not. In order to do this, both the door sensor input and the "request to exit" (RQE) inputs must be wired. Thus if the door is detected as opening without the lock being released then a Door Forced alarm will go active. This is a latching alarm.

Duress

A duress alarm can be raised by entering a modified access code. When the duress feature is turned on and the last digit of the access code is incremented, the duress alarm output is latched on. For example, if your access code is "1 234 " then if you enter "1 235 " the door will be released as normal but also the duress alarm output will go active and latch. If the duress feature is turned off, then "1 235 " would not open the door. See "ENGINEERING MENU" later in this manual. This is a latching alarm.

Hacker

Persons trying to gain access by trying successive codes can be detected and an alarm raised via the Hacker output. The controller will count the number of consecutive errors and when this predetermined value is reached the alarm is generated. The factory set default hacker count is 0 (Off). This is a latching alarm.

Cancelling Latched Alarms

Door forced, Duress and Hacker alarms are all latching. They may be cancelled by:

1. Presenting a valid card
2. Entering the valid user password
3. Valid access code at the keyboard.

Programming

The P4 controller is capable of being programmed "Stand-Alone" from the on board or externally connected keyboard or "On-Line" from Doors Enterprise software running on a central PC.
Programming is achieved by entering a password at the keyboard followed by a menu selection code. There are two Programming Menus, one for the USER and one for the ENGINEER. Each menu has a separate six-digit password. Depending on the menu option selected, configuration data can then be entered at the keyboard.

Unlocking the Keyboard

To unlock the keyboard for programming press * and \# together. The keypad will not accept any input until it is unlocked.

One Door Version

The single door version contains only one controller and therefore the indicators for Door B are not needed. These indicators are included in case the unit is ever upgraded to two doors. Before programming make sure that the 'SELECTED' indicator for Control A is illuminated. If not, press [\#] and [1] keys together. The controller will beep and the 'Control ' A ' selected' LED will illuminate.

Two Door Version

The "two door" version simply contains two access controllers in one enclosure. Both controllers can be programmed from the front panel keyboard but first the user needs to choose which controller to program.
To select control panel A (or door 1) press the [\#] and [1] key together. The controller will beep and the 'Control ' A ' selected' LED will illuminate.

To select control panel B (or door 2) press the [\#] and [2] key together. The controller will beep and the 'Control ‘B’ selected' LED will illuminate.

Programming Flow Diagrams

User Menu

The User Menu is accessed by entering * followed by the User Password. The default for this is 654321.

User Menu \#		Default Value
* 00	User Password	654321
*01	Access Code	None
${ }^{*} 02$	Discover Presented Cards	-
${ }^{*} 03$	Forget Presented Cards	-
${ }^{*} 04$	Add Card by Number	-
* 05	Remove Card by number	-
${ }^{*} 10$	Add Bio Administrator Rights	-
${ }^{*} 11$	Remove Bio Administrator Rights	-
${ }^{*} 14$	Add / Update Template (Enrol)	-
${ }^{*} 15$	Delete Bio Template	-
* 16	Edit Bio Slot to ID Table	-
${ }^{*} 22$	Copy Templates	-

User Password

Passwords are the means by which the systems operator gains access to the programming functions. This is a 6 -digit number and can be changed by using the following procedure.
Changing the user password
This example shows the password changed to 234567.

Default Value:

- 654321

The factory default can be restored by a "Full Reset" or by connecting the PWR input to 0 V for 4 seconds.

Related Engineer Menus:

- 00 "Engineer Password"

Access Code

Programming the Access Code

User Function 01

The P4 controller has a single access code that can be programmed. The access code can be any number of digits from 1 to 8. The access code is only active when the keyboard is in "Normal Keyboard Mode".
See Engineer Function 20 for more details
If more than one access code is needed see "Virtual Card" modes for the keyboard.

Key Switch Programming

Key switch programming makes changing the access code very simple and quick.
The P4 controller has an input labelled "PRG". This can be wired to a simple key switch (Normally Open Contacts). When the key switch is turned the controller will take the next key sequence as the new access code.

Removing the Access Code
Engineer' function 98 will erase the access code.

Cards \& Fobs

Adding Cards by Presentation (Discover)

User function 02

Make sure you have the correct reader technology selected for the readers that are connected before using this function.
All cards presented to the reader will be remembered and given access.
Related User Menus:

- 03 "Forget Cards"
- 04 "Add Card"
- 05 "Disable Card"

Related Engineer Menus:

- 04 "Reader A Technology"
- 05 "Reader B Technology"
- 20 "Keyboard Mode"
- 11 "Random Search

- 20 "Keyboard Mode"
- 31 to 36 "Feedback Volume Control"

Removing Cards by Presentation (Forget)

User function 03

This is the reverse of the Discovery Mode. The cards presented to the reader will be removed from memory and will report as "Unknown Card" if access is attempted.
If you simply need to disable a card use menu function 5.

Progeny

Adding Cards by Number

Adding or enabling credentials by entering the Card ID can be useful when the credentials themselves are not available or if a large number of credentials need to be added.

Single Card:

Note that some cards have a serial number printed on them. This should be used with the cross-reference list, provided with cards, to determine the actual card number.

This example will enable a single card numbered 80230001.

Block of Cards

The quickest way to enable a whole group of cards is to use the block add method shown in this flow diagram.

This example will enable 50 cards, Site code 8023 from card 0001 to 0050.
Related User Menus:

- 02 "Discover Cards"
- 03 "Forget Cards"
- 05 "Remove Card"

Related Engineer Menus:

- 04 "Reader A Technology"
- 05 "Reader B Technology"
- 11 "Random Search
- 20 "Keyboard Mode"
- 31 to 36 "Feedback Volume Control"

Progeny

Disabling Cards by Number

Single card

If a card is reported lost or stolen, the card can be disabled to remove the security risk without affecting any other card users.

Block of cards

The quickest way to disable a whole group of cards is to use the "Block Disable" method shown in this flow diagram.
This example will disable 50 cards, Site code 8023 from card 0001 to 0050.

Related User Menus:

- 02 "Discover Cards"
- 03 "Forget Cards"
- 04 "Add Card"

Related Engineer Menus:

- 04 "Reader A Technology"
- 05 "Reader B Technology"
- 20 "Keyboard Mode"
- 11 "Random Search"
- 20 "Keyboard Mode"
- 31 to 36 "Feedback Volume Control"

Add Administrator Rights to Card ID

User function 10

To allow a particular card holder to manage biometric enrolment using the "Gesture" method with mirror cards.

Related User Menus:

- 11 "Remove Bio Admin"
- 15 "Delete Bio Template"

Related Engineer Menus:

- 21 "List Templates"
- 22 "Copy Templates"
- 23 "Delete Templates"
- 59, 79 "Multi Factor Control"

Remove Administrator Rights to Card ID

User function 11

This function removes the permission to manage Biometric Enrolment.
Related User Menus:

- 10 "Add Bio Admin"
- 15 "Delete Bio Template"

Related Engineer Menus:

- 21 "List Templates"
- 22 "Copy Templates"
- 23 "Delete Templates"
- 59, 79 "Multi Factor Control"

Progeny
 access Contra

Start Biometric Template Enrol / Re-Enrol

User function 14

This function starts the Biometric Enrolment process at the door. It requires a Slot number to be specified.
Uses templates are stored in "slots" numbered 0 to 999 for the right hand and 1000 to 1999 for the left hand.

Each user is allowed two slots one for the right hand the other for the left. If Slot number "456" is selected for a user's right hand then the slot for the left, is simply +1000 ; in this case "1456".

Related User Menus:

- 10 "Add Bio Admin"
- 11 "Remove Bio Admin"
- 15 "Delete Bio Template"
- 16 "Edit Template ID"

Related Engineer Menus:

- 21 "List Templates"
- 22 "Copy Templates"
- 23 "Delete Templates"
- 59, 79 "Multi Factor Control"

Progeny

Del Biometric Template

User function 15

Access control for Biometric transactions is simply controlled by the alias ID of the template. However, it may still be required to remove the template of a user from the system.
For standalone operation this can be done from a connected keypad.
The slot number of the template to be deleted are required for this operation.

Related User Menus:

- 10 "Add Bio Admin"
- 11 "Remove Bio Admin"
- 14 "Start Bio Enrol"
- 16 "Edit Template ID"

Related Engineer Menus:

- 21 "List Templates"
- 22 "Copy Templates"
- 23 "Delete Templates"
- 59, 79 "Multi Factor Control"

Edit ID of Bio Template

User function 16

Each biometric template has an Alias ID. By default, this is the same as the slot number. So slot number 902 will have an alias ID of " 00000902 ". This can be modified to any 8 -digit number.
This can be helpful for those systems using both card and biometric readers. Users can have the same ID if they use a card as when they use biometric authentication.
The ID number and the slot number are required for this operation.

Related User Menus:

- 10 "Add Bio Admin"
- 11 "Remove Bio Admin"
- 14 "Start Bio Enrol"
- 15 "Delete Bio Template"

Related Engineer Menus:

- 21 "List Templates"
- 22 "Copy Templates"
- 23 "Delete Templates"
- 59, 79 "Multi Factor Control"

Copy Single Template

User function 22

Biometric templates can be copied from reader to controller or from controller to reader.

Once initiated the reader will change from Blue to Red for a few seconds during the data transfer.

Related User Menus:

- 10 "Add Bio Admin"
- 11 "Remove Bio Admin"
- 14 "Start Bio Enrol"
- 15 "Delete Bio Template"
- 16 "Edit Template ID"

Related Engineer Menus:

- 21 "List Templates"
- 22 "Copy Templates"
- 23 "Delete Templates"
- 59, 79 "Multi Factor Control"

Engineer Menu

Engineer Menu \#	Description	Range	Default Value
* 00	Password	000000 to 999999	123456
* 01	Delay to Lock Release	0 to 99 Sec	0
* 02	Lock Release Duration	0 to 99 Sec	3
* 03	PDO Time	0 to 99 Sec	$0=\mathrm{Off}$
* 04	Reader A technology	0 to 99	0 (P4 4 Wire)
* 05	Reader B technology	0 to 99	0 (P4 4 Wire)
* 06	Duress	$1=\mathrm{On}, 0=\mathrm{Off}$	$0=\mathrm{Off}$
* 07	Relay "B" mode	0 to 12	0 (follow relay A)
* 08	Timer for "B" relay	0 to 99 Sec	3
* 09	Penalty Time	0 to 99 Sec	0
* 10	Hacker Count	0 to 99	0
* 11	Random Search Rate	0 to 99	0 (Off)
* 12	Unlock Time Zone	0 to 64 (250)	65
* 14	Lock Drive Mode	0 to 4	0 (Relay Only)
* 15	Auto Relock on Door Close	$1=\mathrm{On}, 0=\mathrm{Off}$	0 (Off)
* 16	Clear Event Log	749162	-
* 17	Clear Card Data	749162	-
* 18	Network Security	0 to 1	0 (DE V7.01.x)
* 19	External keyboard * mode	0 to 1	0 = (Disabled)
* 20	Keyboard Mode	0 to 8	0 (Access Code)
* 21	List Bio Templates	0	-
* 22	Copy Bio Template	0, 1, 2, 51, 52, 53, 91, 92	-
* 23	Delete Bio Template	1, 2, 3, 4, 5	-
* 24	Bio Slot to ID Entry	-	-
* 25	Reader A APB Configuration	0 to 3	0
* 26	Reader B APB Configuration	0 to 3	0
* 27	Relay B Time Zone	0 to 64 (250)	65
* 28	$2^{\text {nd }}$ Stage Delay	0	0
* 29	Network Transmit Delay	0 to 99	10
* 30	Controller Mode	3	3
* 31	Alarm Sound Volume Controller	0 to 15	15
* 32	Feedback Volume Controller	0 to 15	8
* 33	Alarm Volume Reader A	0 to 15	15
* 34	Feedback Volume Reader A	0 to 15	8
* 35	Alarm Volume Reader B	0 to 15	15
* 36	Feedback Volume Reader B	0 to 15	8
* 40 to 54	Custom Reader Template A	-	-
* 56	Prefix code for reader A	0000 to 9999	0000
* 58	Status Light Brightness Reader A	0 to 9	5
* 59	ID Factor Sequence A	-	-
* 60 to 74	Custom Reader Template B	-	-
* 76	Prefix code for reader B	0000 to 9999	0000
* 78	Status Light Brightness Reader B	0 to 9	5

$* 79$	ID Factor Sequence A	-	-
${ }^{*} 80$	IP Address	0.0 .0 .0 to 255.255 .255 .255	0.0 .0 .0
${ }^{*} 81$	Gateway IP address	0.0 .0 .0 to 255.255 .255 .255	0.0 .0 .0
${ }^{*} 82$	Net mask (Host Bit Count)	0.0 .0 .0 to 255.255 .255 .254	255.255 .255 .0
${ }^{*} 84$	Server IP Address	0.0 .0 .0 to 255.255 .255 .254	0.0 .0 .0
${ }^{*} 97$	Factory Reset IP Settings	-	192.6 .32 .200
${ }^{*} 98$	Clear Access Code	-	-
*99	Reset User Password	-	654321

Progeny
 access Contral

Lock Delay Time

Lock delay time is the amount of time before the locking device is released following a valid card or the triggering of the RQE input. This may be from 0 to 99 seconds.

Programming the Lock Delay Time

This example will change the "delay to lock release" to 5 seconds.

Default Value:

- 0 Seconds

Related Engineer Menus:

- 02 "Lock Release Time"

Lock Release Time

Lock time is the amount of time that the locking device is released following a valid card or the triggering of the RQE input. This may be from 0 to 99 seconds. If a door sensor is fitted then the auto relock feature means that the lock time will be cut short once the door closes again.
Programming the Lock Release Time Default Value:

- 3 Seconds

Related Engineer Menus:

- 01 "Delay to Lock Release"
- 15 "Auto Relock on Door Close"

Toggle Mode

If the lock time is set to zero the lock output will be in "Toggle Mode". In this mode: each time a valid card is presented or correct code is entered, the output relay will "Toggle" to the opposite state and stay that way.

Door Failed to Close Alarm (PDO)

Previously known as "PDO" alarm. There are connections on the control unit to allow the monitoring of the door open status. This value is the amount of time the door may be open before triggering an audible alarm from the control unit. This may be from 0 to 99 seconds. If this is set to zero, the PDO alarm is disabled.

Programming PDO Time

Pressing 7 and 8 together will mute the integral PDO alarm sounder. This does not affect the PDO alarm output. The PDO will however re sound on the next alarm occurrence. To disable the PDO sound and output permanently, program the PDO time to zero.

Progeny

Reader A \& B Technology

The reader technology code allows different types of card readers and cards to be used. Each card reader input can have its own technology setting.

Code	Template	Notes
$\mathbf{0}$	Crystal Reader	Native Bidirectional 4 wire Interface
$\mathbf{1}$	ISO 15693	ISO 15693 (Tagit 64) (Firmware 4.30+)
$\mathbf{2}$	Progeny Prox	Standard Progeny HID format for Prox \& iCLASS
$\mathbf{3}$	26 bit $(8+14)$	General 26 bit Max Card ID = 9999
$\mathbf{4}$	26 bit $(8+16)$	Extended 26 bit Wiegand Max Card ID $=65535$
$\mathbf{5}$	MIFARE A	MIFARE CSN 8 + 16
$\mathbf{6}$	MIFARE B	MIFARE CSN 16 + 16
$\mathbf{7}$	Corporate 1000	Use Engineer 56 \& 76 to set the ID for Reader A \& B
$\mathbf{8}$	Tech 8	Not Used by P4 Controllers
$\mathbf{9}$	Progeny Magstripe	For use with Progeny Scrambled Magstripe Cards Only
$\mathbf{1 0}$	Royal Mail	
$\mathbf{1 1}$	8 Digit C \& D	General clock \& data
$\mathbf{1 2}$	Lobby Entry	Uses the Most Significant 4 Digits as the Card ID
$\mathbf{1 5}$	BSBELE (Hughs)	TECH 15 for P4 controllers

Programming Reader Technology A Crystal readers
These are connected using the 4 wire method. Select Template 0.

Progeny iCLASS readers
Most commonly uses Template 2 "Progeny
Prox"
Progeny HID Pox readers
Most commonly uses Template 2 "Progeny Prox"

Programming Reader Technology B

Crystal readers
These are connected using the 4 wire method. Select Template 0.

Progeny iCLASS readers
Most commonly uses Template 2 "Progeny Prox"

Progeny HID Pox readers
Most commonly uses Template 2 "Progeny Prox"

Corporate ID

This function sets up the Corporate ID code for HID Corporate 1000 format cards. This works in conjunction with technology 7 , which must be selected in order for this format to operate correctly.

Example 1:

Sets up reader A to check the prefix 0535 for corporate 1000.

Example 2:

Sets up reader B to check the prefix 0535 for corporate 1000.
Without these values set, the card will report as "Unknown Card".

Progeny
 access Contral

Duress Feature

If the duress feature is turned on, a duress alarm is generated when a modified access code is entered. To modify the access code to a "Duress Access Code" just increment the last digit of the "Normal Access Code. For example, if your access code is "1234" then if you enter "1235" the door will be released as normal but also the duress alarm output will go active and latch. If the last digit is 9 then rap around to 0.

A duress alarm can only be cancelled by entering the valid User / Engineer password or by presenting a valid card. While this feature is turned on each access code has a shadow thus doubling the number of valid access codes.

Programming Duress Feature

Range of Values:

- $0=$ Off
- 1 = On

Default Value:

- $0=0 f f$

Related Engineer Menus:

- 01 Access Code

Relay B Mode

Relay B can be configured to perform a number of different roles. By default, the relay simply mimics the lock relay and allows loads to be driven or provide voltage free contacts for other equipment such as Barriers, Turnstiles etc.

Code	Behaviour
$\mathbf{0}$	Follow Lock Output
$\mathbf{1}$	Future Use
$\mathbf{2}$	Follow Door Forced
$\mathbf{3}$	Follow Duress
$\mathbf{4}$	Follow Hacker
$\mathbf{5}$	Follow PDO
$\mathbf{6}$	Follow Random Search
$\mathbf{7}$	Follow Fire Input
$\mathbf{8}$	Follow Intruder Input
$\mathbf{9}$	PC Controlled
$\mathbf{1 0}$	Follow Time Zone
$\mathbf{1 1}$	Two Stage Lock
$\mathbf{1 2}$	Release

Programming the Relay B Mode

Progeny
 access Contral

Relay B Timer

Lock time is the amount of time that the locking device is released. This may be from 0 to 99 seconds. If this value is set to zero, then each time the channel is triggered the relay will "Toggle" to the opposite state.

Programming the Relay B Timer

Penalty Time

This feature can slow down persons who are trying to gain access by using successive codes. As soon as an incorrect code is detected at the keyboard this penalty time is invoked, preventing any further access attempts until the timer elapses.

Programming the Penalty Time

The factory set default penalty time is 0 seconds (Disabled).

Hacker Output

Persons trying to gain access by trying successive codes can be detected and an alarm raised via the Hacker output. The controller will count consecutive errors and when this predetermined value is reached the alarm is generated. This alarm is latching and can only be reset by someone who knows the password. See "Resetting alarm" later in this manual.
TO CHANGE THE HACKER COUNT
The factory set default hacker count is 0 (Disabled)

Random Search

It is sometimes necessary to carry out random searches on staff as they enter of leave a site that is sensitive or has high value items.
This feature signals when a random search should be done. This removes any possible "Collusion" or "Prejudice" to be levelled at the personnel carrying out the searches.
The Hacker Alarm output is used to signal the search.

Programming Random Search

Feature

The value entered using this Engineer function sets the average rate that searches will be signalled.

- $0=\mathrm{Off}$
- $1=1: 1$
- $99=1: 991$ in 99 accesses

Default Value:

- $0=0 f f$

Related Engineer Menus:

- 07 "Relay B Mode"

Progeny
 access Contral

Lock Drive Mode

The lock drive from a P4 controller has the conventional Relay driven output that switches positive supply to the locking device. However, it also has a new electronic drive that switches the negative supply to the lock.

The electronic switch option has the advantage of needing less power and having no moving parts.
Note: in electronic modes the Lock LED will flash when the lock is released

Range of Values:

Mode 0 = Relay Only
Mode 1 = Electronic VR
Mode 2 = Electronic VA
Mode 3 = Protected Relay
Default Value:

- $0=$ Relay Only

Related Engineer Menus:

- 01 Delay to Lock Release

- 02 Lock Release time

Relay Modes 0 \& 3

Fail Secure

Electronic Modes 1 \& 2

Fail Open

Fail Secure

Auto Relock

This function is used to control the behaviour of the controller after the door sensor input detects that the door is opened and closed after a valid lock release. If enabled, the door will be automatically locked once the door is closed, effectively shortening the lock release time.

Programming Auto Relock Feature

This example flow diagram shows the "Auto Relock" feature being turned on.
Range of Values:

- $0=0 f f$
- 1 = On

Default Value:

- $0=0$ Of

Related Engineer Menus:

- 02 "Lock Release Time"

Clear Event Log

The P4 controller can store up to 8000 events in the event log. It can be useful in some cases to erase this data without affecting any other programming.
Engineer function 16 will clear the event log as long as the fixed verify code is entered as shown. The verify code prevents accidental use.

Clear Card Data

This function will erase all card pack data in the controller, and will reset the card pack count to zero.
N.B. Using this function will erase all card data from the controller.

Erase Card Data Function

Network Security

This function selects the active protocol. The default value 0 selects Doors Enterprise 7.01.0xxx. When set to 1 it selects the more secure 7.02.xxxx. You must have Doors Enterprise V7.02 or higher installed to use this setting.

Network Security

Range of Values:

- $0=$ V7.01.xxxx Legacy mode
- 1 = V7.02.xxxx or higher with improved security

Default Value:

- $0=\mathrm{V} 7.01$

Related Engineer Menus:

Progeny
 access Contral

External Keyboard Star Key Mode

External keyboards are those connected to the Keyboard terminal block or Reader A or Reader B terminals. These keyboards can be used for programing in the same way that the engineer's keyboard is used. However, for additional security this can be stopped by disabling the "Star" key on those keyboards.

Values

0 = Disable
1 = Enable

Default Value

- $0=$ Disabled

Related User Menus:

- 01 "Access Code"

Related Engineer Menus:

- 20 Keyboard Mode
- 98 Clear Access Code

Keyboard Mode

By default, the keyboards work as simple access code input. However, they can be used in number of different modes for access control.

Code	Behaviour
$\mathbf{0}$	Normal Keyboard
$\mathbf{4}$	Virtual Card (4 Digits)
$\mathbf{5}$	Virtual Card (5 Digits)
$\mathbf{6}$	Virtual Card (6 Digits)
$\mathbf{7}$	Virtual Card (7 Digits)
$\mathbf{8}$	Virtual Card (8 Digits)

Related User Menus:

- 01 "Access Code"

Related Engineer Menus:

- 19 External keyboard * mode
- 98 Clear Access Code

Progeny
 access Contral

Reader A APB Configuration

This programming function will select the way in which a reader will affect and/or implement the anti-pass back feature.

Programming Reader A APB Configuration

APB	Behaviour
Mode	
$\mathbf{0}$	No change to APB
$\mathbf{1}$	Log Card In
$\mathbf{2}$	Log Card Out
$\mathbf{3}$	Enforce APB \& Log Card In
$\mathbf{4}$	Enforce APB \& Log Card Out
$\mathbf{5}$	Enforce APB In
$\mathbf{6}$	Enforce APB Out

Reader B APB Configuration

This programming function will select the way in which a reader will affect and/or implement the antipass back feature.
Programming Reader B APB Configuration

APB Mode	Behaviour
$\mathbf{0}$	No change to APB
$\mathbf{1}$	Log Card In
$\mathbf{2}$	Log Card Out
$\mathbf{3}$	Enforce APB \& Log Card In
$\mathbf{4}$	Enforce APB \& Log Card Out
$\mathbf{5}$	Enforce APB In
$\mathbf{6}$	Enforce APB Out

Progeny
 access Contral

Two Stage Lock Release Interval

When relay B is set for "Two Stage Lock Release" (See Engineer 07) this function sets the interval between "Relay A (Lock Relay)" opening and "Relay B" operating. A two-digit number from 0 to 99 can be entered. This is multiplied by 10 milliseconds, thus a value of 25 would give a 250 mS interval.

This can be useful when driving automatic door openers and locking the same door. Use Relay A to power the lock and relay B to trigger the opening device shortly after.

Programming the Two Stage Lock Release Interval

Network Transmit Delay

The Network Transmit Delay is used to allow the controller to interface with USB to RS485 converters. The value entered will delay the controller from transmitting an RS485 network response for $1 \mathrm{~ms} \times$ the value entered. 10 mS is the default.

Programming the Network Transmit

 DelayRange of Values

Controller Mode

Mode 3 is the only currently valid and supported Mode. Do not change this. The current value is displayed on the blue Status LED. 3 flashes with a pause will be Mode 3.

Restoring Factory Settings

Reset Button

Engineer menu.

The reset button allows the engineer to perform a factory reset. This resets all parameters to the factory default values and removes all Cards, Access Levels, Time Zones, Calendars and the Access Code.
The reset button needs to be held for 4 seconds to start the reset sequence. All the LEDs on the PCB will go into lamp test mode during the reset sequence.

The Controller will now use the factory settings for all codes and timings. See defaults listed in the user and

Note:

This will also remove all programmed cards and access codes. This procedure does not remove any IP address, Gateway or Subnet Mask values from the Ethernet port on the P4.net controller.

Password Reset

The "PassWord Reset" (PWR) input can be used to restore just the User \& Engineer Password to factory defaults without affecting any other programming. Place a temporary link from PWR to OV and hold it for 4 seconds. The Passwords will then be reset to:

- User: 654321
- Engineer: 123456

IP Address

NOTE: When programming IP parameters, unplug the Ethernet cable and the RS485 Network Terminal Block.

The IP address allows the Doors access control software to communicate with the P4.net controller and any P4 controllers connected to the (RS 485) P4 network. The IP address must be fixed and will be assigned by the network administrator.

Programming the IP Address

The number is usually represented in an "x.x.x.x" notation. When programming the IP address, use the * key to represent the decimal points. Each "x" will be a number from 0 to 255. A typical IP address would be 192.168.0.200, entered as $192^{*} 168^{*} 0 * 200$.

Gateway Address

The gateway or router address allows communication between LAN segments or subnets. The gateway address should be the IP address of the router connected to the same segment as the P4.net controller. The network manager should be able to supply this information.

Programming the Gateway Address

The gateway address is represented in an "x.x.x.x" notation as for the IP address. When programming, use the * key to represent the decimal points. Each " x " will be a number from 0 to 255. A typical IP address would be 192.168.0.1, entered as $192^{*} 168^{*} 0^{*} 1$.

Progeny

Netmask

The IP address is a 32-bit binary number. The net mask divides the bits of the IP address into "Net" and "Host" parts. Normally the net mask is represented in the "x.x.x.x" notation, e.g. 255.255.255.0. The last number " 0 " represents the 8 zeros of the 32bit net mask.

The network manager should be able to supply the Subnet Mask required.

Programming the Netmask

Only certain values are valid for a Subnet Mask. The value being used or supplied by the network manager should be one of the following:

Progeny

Reader A Brightness Control

The Dark Crystal range have status light indication that can be made brighter or darker as the application demands. Mostly the default value is fine. However, in some un supervised locations it may attract the attention of vandals and it may be preferable to turn the brightness down to 0 .

Values

- $0=0$ ff to $9=100 \%$

Default Value

- 5 = Medium Bright

Related Engineer Menus:

- 78 Reader B Brightness
- 33 Reader A Volume
- 36 Reader B Volume

Reader B Brightness Control

The Dark Crystal range have status light indication that can be made brighter or darker as the application demands. Mostly the default value is fine. However, in some un supervised locations it may attract the attention of vandals and it may be preferable to turn the brightness down to 0 . Values

- $0=0$ ff to $9=100 \%$

Default Value

- $5=$ Medium Bright

Related Engineer Menus:

- 58 Reader A Brightness
- 33 Reader A Volume

- 36 Reader B Volume

List Templates

This is a diagnostic tool to read the template memory of the controller and report via the event log each template found. The results will only be seen in a live event viewer as shown below.

Function 21 executed

Values

- $0=$ Confirm

Related User Menus:

- 10 "Add Bio Admin"
- 11 "Remove Bio Admin"
- 14 "Start Bio Enrol"
- 16 "Edit Template ID"

Related Engineer Menus:

- 22 "Copy Templates"
- 23 "Delete Templates"

Progeny
 access Contral

Copy Templates

It is possible to copy all the templates from a controller to a biometric reader and visaversa.

Engineers function 22 starts this process running. It runs as a background process that can take a couple of hours to run. During this time, you may notice the biometric reader flash to red every few seconds.

To cancel the copy process, enter " 0 " as the direction.

Related User Menus:

- 10 "Add Bio Admin"
- 11 "Remove Bio Admin"
- 14 "Start Bio Enrol"
- 16 "Edit Template ID"

Related Engineer Menus:

- 21 "List Templates"
- 23 "Delete Templates"

Delete Templates

This function deletes all Biometric templates from a target device (Biometric Reader, or Controller).

Re-Alias Template ID's

The Biometric Alias ID is the Identification Number used for access control. When a finger is Identified or Verified, the Alias ID for that biometric slot is looked up and used for all access control decisions. When Enrolling online from Doors Enterprise or when using the Gesture Method these Aliases are already defined. However, if the stand alone keypad method is used to enrol then the default Alias ID is just the slot number.

This function allows the quick renumbering of the Biometric template alias ID's. The function takes the Prefix and adds it to a 4-digit format of the slot number.

This is repeated for all the templates in the controller memory.

Sequential Multi Factor Authentication

This is a selection of authentication methods presented in a sequence. For example, to increase security on a door we could insist that all users to identify themselves using three factors. The three factors being:

1. An access code "Something you Know"
2. A valid card "Something you Have"
3. Biometric fingerprint "Something you Are"

The procedure would be one transaction and each has a Transaction ID.

Selecting Authentication Factors and Sequence

At Reader A or B (In or Out) there may be 1, 2, 3 or 4 authentication methods used via the same interface.

Giving separate control over Reader A \& B allows for any combination of 1 to 4 factor in and/or out of a given door. Any unused factors in a sequence will be available as random access. For example, if we use $4 \& 9$ card verified by biometric then "access code" via the same keypad will be available if it is setup.

Engineers Functions:

- Engineers Function 59 ID Factors Reader A:
- Engineers Function 79 ID Factors Reader B:

Sequential Authentication function:

These functions accept up to 4 digits' calculator style. Each digit represents an authentication Factor option from a Dark Crystal reader. The digit represents:

Authentication Digit	Method Required	Notes
0	Off	Any authentication method can be used in isolation
1	Access Code	Engineers 20 (1 = code), User 01 to Set Code
2	Virtual Card	Engineers 20 sets number of digits $(4,5,6,7$ or 8$)$
3	PIN (4 Digit in card record)	Must be preceded by 2 or 4
4	Card / Fob	Physical Card ID
5	Not Used	For future use
6	Not Used	For future use
7	Not Used	For future use
8	Biometric Identification (1:N)	Any Valid Biometric ID
9	Biometric Verification (1:1)	Must be preceded by 2 or 4

Examples:

1 Factor:

Card Only just enter "4". With a 4850 reader the biometric read is disabled.

1 Factor:

Biometric Only just enter " 8 ". With a 4850 reader the proximity read is disabled and the standby colour changes to pink.

2 Factor:

Valid Card followed by Code enter "4 1". A valid card followed by the entry of the access code for that door will release the lock.

2 Factor:

Code followed by valid Card enter " 14 "
2 Factor:
Valid Card followed by valid Virtual Card enter "4 2"

2 Factor:

Valid Card followed by valid PIN enter "4 3"

3 Factor:

Card followed by 4 Digit VC followed by Bio Verification enter "4 2 9"

4 Factor:

Code followed by 6 Digit VC followed by Card followed by Bio Verify enter "1 24 9"

For Reader A

Progeny

Engineer Password

The passwords are the means by which the commissioning engineer gains access to the programming functions. This is a 6 -digit number and can be changed by using the following procedure.

Changing the Engineer Password

Default *123456

Reset User Password

It can be useful for the engineer to reset the user password. By entering the engineering menu and select function 99 the Users Password will be set to the new value.

Resetting the User Password

access Contral

Installation

Safety Notes

- Please read this manual carefully before attempting to install, program or operate the Progeny Access Control P4 equipment.
- This equipment must be installed in line with all relevant regulations and standards.
- Make sure that wiring is rated according to fuses and current limits of relevant power supplies.
- Apart from the mains supply, all connections to this unit must be SELV level. (Safety Extra Low Voltage as defined in BS EN 60950-1:2006)
- No users should access the inside of the control box. The control box contains hazardous voltages and access is limited to qualified personnel only. All user-programming for the controller is either done at one of the keyboards or at the PC.
- Every effort is made to ensure that this manual is complete and free from errors. However we reserve the right to make changes to these products and this manual without notice.
- No liability is accepted for loss damage or injury as a consequence of using these products or instructions.

Mounting

The optimum location for the controller depends on the application. As a general Guide:

- Always mount the control equipment on the secure side of the door.
- If the user needs to program the unit from the keyboard on the front panel, mount at head height in an accessible location with reasonable light.
- Mount as close as possible to the door(s) to be controlled (less than 100m).

Drill \& Plug the wall for three mounting screws to line up with the fixing dimples. Bring in mains supply and other cables that are to enter via the rear cable access holes. Screw the controller to the wall.

Mains Power

The P4 Controller should be
 connected to a 24 Hour 220V mains supply. A fused spur should be used for this purpose. The cable used to connect the mains supply should be 0.75 to $2 \mathrm{~mm}^{2}$. A fused terminal block is provided for mains; observe the polarity when making these connections.
WARNING: Extreme caution must be used when opening the controller housing. DO NOT touch any connections or components other than the reset button. Avoid touching any of the terminations with a metal object such as a wristwatch or jewellery.

Front Panel Indicators

When designing an access control system, it is important to make sure that the power supply is not overloaded. The built in power supply of the P4 range of controllers is capable of providing power for most standard applications. However, there may be situations where additional power supplies are required. These notes are intended to help you determine when this is the case.

Power Supply Maximum Loads

To protect external wiring each output from the power supply has an individual current limit or resettable fuse. There are overload LED indicators next to each output port that will light if the overload protection is activated. The maximum loads on the PSU terminals are as follows:

Budgeting

Note that the above table shows the current limit of each connection and does not show the total budget available. Total available current at any one time is 5A. When budgeting for the load it is the Peak current values of the devices that will be connected that should be used.

Cables

Pay close attention to the current rating of cables that are connected to this power supply and any fitted equipment. In particular the 2 Amp outputs, typical alarm cable is 7 strands of 0.2 mm and is only rated at 1 Amp. Check with your supplier of the cable you are using.

P4 \& P4.net Cabling Diagram

Battery

We recommend fitting a 12 V 7 Ah battery in the event of a mains failure. Batteries should be serviced at regular intervals (24 months is a respectable period).

Important Note:

If rechargeable batteries are to be fitted, then they must be of the correct type. The power supply is designed to charge sealed lead acid batteries. Do not; connect NiCad, Dry Cell batteries or any other chemistry of battery.

- Power up sequence should be:
- Power down sequence should be:

Mains first then Battery
Battery first then Mains

Connection Diagrams

Ethernet (IP Addressed) Connection

Figure 1

Lock \& Relay B

Locking devices fall into categories:

- "Fail Secure"
- "Fail Open"
- "Triggered Device"

The following diagrams show a typical connection of these two types of locking device.

Fail Secure

The "Fail Secure" locks require power to release the door. This diagram shows an electric strike, however these devices can be Fail Secure or Fail Open and some can be configured for either.

Fail Open

The "Fail Open" locks require power to hold the door locked.
Note: in this case if the door forms part of an emergency exit route, a means of overriding the device should be fitted.

This diagram shows a green call point but it could equally be a "Fire Relay" controlled from a Fire Alarm system.

Triggered Device

Triggered devices usually require a normally open voltage free contact to trigger the device. This can be a Car Park Barrier or a powered Automatic Door Opener.

Progeny
 access control

Relay B provides voltage free contacts and the default behaviour is to follow the lock relay. It can also be programmed to work in conjunction with the lock relay to give a two stage release or to work with a directional turnstile.

Lock Suppression

It is important to check that the locking device is suppressed. Any electromagnetic device will produce a Back E.M.F when power is removed. This can interfere with and even damage other electronic equipment. Most good locking devices will already have suppression fitted. If not, you should fit an appropriate suppression device across the coil.

In the case of solenoid operated locks, a flywheel diode will do. Connect the cathode to the positive and the anode to the negative terminal of the coil. The diode will need to be rated at the full operating current of the coil.

Do not use a diode for a mag-lock, as this will cause an excessive delay to the release of the door. An MOV or VDR is a far better choice. Polarity is not critical, but make sure the rated voltage is greater than the normal operating voltage of the lock.
A more detailed explanation of Back E.M.F. can be located at our website here: https://progeny.co.uk/back-emf-suppression

Lock Volt Drop

Figure 1 shows how the voltage at the locking device varies with cable length and core size.

Figure 1

Inputs

Request to Exit (RQE)

The RQE "Request to Exit" input is used to trigger the lock release timer. The input accepts a normally open voltage free contact.

Generally, this input is used to provide egress where the locking device does not provide mechanical override. Door Magnets and Turnstiles are a couple of examples.
This input may also be used to provide a remote opening; from a receptionist's desk or a video or intercom door entry system.

Door Sense (DR)

The Door Sense input is used to detect when the door is fully closed. The voltage free contact should be closed when the door is closed.

The use of door monitoring is optional but there are many features that make use of this input including:

- Auto Relock
- Door Failed to Close Alarm (PDO)
- Door Forced Alarm

- Interlock

If the door is not being monitored, a wire link can be fitted between the "DR" input and the " 0 V " terminals. Some door magnets have built in monitoring, this can be used for PDO and Door Forced monitoring but may not suitable if the system is to be used in reverse action interlock or auto relock applications.

Keyboard

The keyboard interface allows for code or pin to be used for access control and to allow remote programming of the standalone system. The interface uses a binary coded decimal (BCD) scheme to reduce the number of connections required. When a key is pressed, the A, B, C, \& D terminals are pulled to 12 V in a combination representing the key. It useful to note that the keys $1,2,4 \& 8$ pull $A, B, C \& D$ respectively.

Cable \& Connections:

Always use a screened non-twisted cable for keyboard. More than one keyboard can be wired in parallel for Code in Code out applications. The screen of the cable should be connected to the earth stud of the controller. Keep the pigtail of the screen as short as possible once the cable has entered the enclosure. The inner cores can then make the rest of the journey to the terminal blocks.

Status Outputs

All the status outputs are open collector transistor driven. When active the transistor switches the terminal to 0 V . Any externally connected devices should be connected between that terminal and the +12 V available at the keyboard terminal block. Any inductive loads, such as relay coils or electromechanical buzzers should have suitable suppression fitted. A diode is usually sufficient for a relay coil. Connect the bar end (cathode) to the +ve .

Buzzer

This is provided for backward compatibility with earlier controllers. The sounds from this type of output are limited to long \& short beeps and trill.

	STATUS LED
LED state	Meaning
OFF	Standby
On	Lock released or Interlock from another door
Flashing	Programming Mode

Card Readers

Reader A, Reader B:
Only one reader may be connected to each input. Reader A \& Reader B are separately identified in the event log. They can be used for

- "Card In" and "Card Out"
- Dual Height Readers
- Directional Turnstiles

Cable \& Connections:

Always use screened, and ideally, none twisted cables for card readers. Don't exceed the 100 m cable limitation. The screen of the cable should be connected to the earth stud of the controller. Keep the pigtail of the screen as short as possible once the cable has entered the enclosure. The inner cores can then make the rest of the journey to the terminal blocks.

P4 Controller	P4 4 Wire	Crystal Barcode	Progeny Magstripe	Progeny HID Prox	Progeny iCLASS
Template:	0 : Crystal (Default)	11: Eight Digit Clock \& Data	11: Eight Digit Clock \& Data	2 Progeny Prox	2 Progeny Prox
+12V	+12V	Red (+12V)	Red (+12V)	Red (+12V)	Red (+12V)
BUZ		Blue (BUZ)	Yellow (BUZ)	Yellow (BUZ)	Yellow (BUZ)
X	X	White (DAT)	White (DAT)	White (D1)	White (D1)
Y	Y	Green (CLK)	Green (CLK)	Green (D0)	Green (D0)
OV	OV	$\begin{aligned} & \text { Black (OV) } \\ & \text { \& Brown (D) } \end{aligned}$	Black (0V)	Black (0V)	Black (0V)
LED		Orange (LED)	Orange (LED)	Orange (LED)	Orange (LED)
Earth Stud	Screen	Screen	Screen	Screen	Screen

Networking

Networking the access control system allows the server PC to communicate with each door controller. The networks can be constructed in a number of ways called "Topology".
Individual access control PCBs are addressed using a combination of the "Controller Address" and "Communication Channel".

Doors Enterprise can communicate via:

- USB to RS485 Interface using a virtual com port
- Ethernet UDP/IP over a LAN or WAN
- GPRS UDP/IP over the mobile telephone network

Dot net to Every Controller

In this topology, each controller has its own Ethernet Port and its own IP address. The IP address must be a fixed IP address.

Pros
With this topology there is no need to connect strings of controllers together on the RS 485.
The Controller can be anywhere in the world as long as there is a LAN or WAN to connect to.
Cons
Equipment cost per door will be higher due to the additional Ethernet device servers. This may be offset with reduced installation time.

Progeny
 access Contral

Dot net with RS485 Daisy chain

In this topology, each controller on the RS 485 shares the same IP address of the single dot net controller.

The Maximum number of controllers that can be connected this way is 16 .

Pros
Reduced equipment cost.
Cons
Installation time.

Progeny
 access Contral

RS485 Network Connection

The network used to link the controllers back to a central point is "RS 485". This allows half duplex communication and requires a cable with twisted pairs and an overall screen.
When pulling the cable into place, be careful to avoid Fluorescent lighting ballasts and large mains transformers, motors and switchgear.

There are two methods of connecting networks of controllers together. Both methods require the screen of each segment of cable to be connected to the next. It is also important to connect the screen of the network cable to earth at just one point.

Connection Method A

This method uses the earth as a reference ground. This method is simple and works well in small systems where the controllers are located close together. However, if you have controllers that are a long distance apart or where there is significant noise on the earth, method B will be better.

Connection Method B

This method isolates the earth from the 0 V and uses a spare pair of conductors to connect the 0 V of each controller.

Alarms

This diagram shows the three main ways that alarm devices can be connected to the controller. All the alarm outputs are open collector transistors that switch to OV when active. Any inductive loads, such as relay coils or electromechanical buzzers, should have suitable suppression fitted. A diode is sufficient for a relay coil. Connect the bar end (cathode) to the +ve.
The PDO alarm sounder is shown powered from the access control PSU. The extra load should be accounted for and care should be taken that the alarm device voltage rating is the same as that selected for the lock load.
The door forced alarm is shown connected to an external power supply. Note that the -ve of the external PSU is connected to the 0 V of the access control unit.

The Hacker and Duress outputs are shown connected to a "Digital Communicator". Check that communicator will accept the open collector as an input trigger. Note again that the 0 V of the DC communicator is connected to OV of the access control unit.

Relay B can also be made use of if voltage free contacts are required for any of the four alarm outputs. See Engineer programming menu 07.

Interlocking

Interlocking allows two or more doors to work together creating an airlock system. This works by each controller informing others of the door status. This is done using the interlock input and the interlock output.

Interlock Output:

This output becomes active if either the Door sensor input is open or the lock output is active. In other words, the door is insecure.

Interlock Input:

This input prevents the controller from initiating an unlock sequence. This applies to all possible sources including RQE, Card Reader, Keyboard, Network command.

The lamp drives allow indication of interlocked status at the door.
Tip:
When commissioning remove the interlock connections and test each door's operation first. Then connect the interlock and verify the interaction of the two doors. Three and four way interlocks can be constructed using the 2069 InterlockProgramming module. See the separate data sheet for more information.

Specification

Ethernet

Speed
Cable
Protocols
Management
Controller Memory
Event Memory
Time Zones
Time elements
Calendars
Cards
Custom Card Formats
Reader Technologies
Two Reader Inputs
Reader supplies
Access codes
Virtual Cards
Biometric Templates

Controller

Dimensions:
Keyboard Functions

Relay Outputs

Lock Output Relay
Relay B contact ratings
Lock Timer
Anti-Tailgate Feature
Network
RS 485 (2 wire)

Interlock

Connections

Inputs

Request to exit input Door sensor input Auxiliary

Alarms
Door forced alarm output PDO alarm output Hacker alarm output Duress output

Status

LED Readers, keyboard
Buzzer

10Base-T or 100 Base-T (Auto-Sensing)
Category 5 (90 metres max)
TCP/IP, UDP/IP, ARP, ICMP (PING)
Via programming keyboard or DS Manager
8000 time date stamped
up to 250
up to 250
up to 100
32,000 standard (128,000 option)
Standard Wiegand \& Clock/Data
Proximity, Wiegand, Barcode, Magstripe, Biometric. Crystal
"Card in" - "Card Out" or Dual Height
12V @ 1.0 A current limited
1 (1 to 8 digits)
up to 32,000 (4 to 8 digits)
1000 users (2 Templates per user)
$310 \mathrm{~mm}, 330 \mathrm{~mm}, 90 \mathrm{~mm}$
PDO Mute, Sound Volume

12V DC Applied \& Removed
3.0 Amps at 30V DC

1 to 99 seconds
0 = Toggle mode
As standard

Half Duplex

In \& Out with lamp drives

Normally Open Contact closed contact when door closed Fire, Intruder (Closed for standby, Open for Alarm)

Programming

Power Supply

Supply
230 V AC 75 Watts
Battery Charger
Sealed Lead acid 12V 7Ahr

Progeny
 access C ontral

ADVANCED FEATURES

User Formats

For Clock \& Data formats

When the controller reads a card, the number is loaded into a 32-digit buffer. If there are more than 32 digits, the surplus digits are ignored apart from being used to calculate and check the LRC.
Functions 40 to 54 store a two-digit number 1 to 32 representing the ordinal positions of digits the in buffer. If a particular digit needs to fixed to a set value. Storing a value 50 to 66 does this. 50 represents a digit 0,51 a 1,52 a 2 and so on. 60 to 66 represents hexadecimal A to F. Thus field separators can be represented (0Dh, "=").

Function 54 allows the numbers to reference from the beginning or the end of card information. If left justified the digits are counted from the start sentinel forward. If right justified, the digits are counted from the end sentinel backward.
The fifth digit of the site code and card number are both fixed to 0 by using " 50 ". The card is read from the start (*54 = 0). The fourth digit of the card number is taken from the ninth digit from the start of the card and so on.

Reader A	Reader B	Wiegand Description	Clock \& Data Description
*40	*60	1= Wiegand, $2=\mathrm{C} \& \mathrm{D}, 3=\mathrm{P} 4$	1= Wiegand, $2=\mathrm{C} \& \mathrm{D}, 3$ = P4
*41	*61	Card Number Start (bit)	Site Code Digit 4
*42	*62	Card Number length (bits)	Site Code Digit 3
*43	*63	Site Code Start (bit)	Site Code Digit 2
*44	*64	Site Code length (bits)	Site Code Digit 1
*45	*65	Total Bit Count ($0=$ no check)	Total Digit Count ($0=$ no check)
*46	*66	Card Number Digits Use	Card Number Digit 4
*47	*67	Site Code Digits Use	Card Number Digit 3
*48	*68	Even Parity Length (bits) $0=$ None	Card Number Digit 2
*49	*69	Odd Parity Length (bits) $0=$ None	Card Number Digit 1
*50	*70	Prefix Code Start (bit)	Dist Code Digit 4
*51	*71	Prefix Code length (bits)	Dist Code Digit 3
*52	*72	Prefix Code Digits	Dist Code Digit 2
*53	*73	Even Parity Start (0 MSB)	Dist Code Digit 1
*54	*74	Odd Parity Start (0 = LSB)	"Read from" 0 = Left, 1 = Right

Progeny

Func	tion											
		Wiegand Description						$\text { MIFARE CSN } 16 \text { + } 16$	8 8 0 0 0 0 0 0		(selon әəs) E7E9Sa \&d	
			1	2	3	4	5	6	7	8	15	16
*40	*60	$1=$ Wiegand, $2=C \& D, 4=B C D$	1	1	1	1	1	1	1	0	4	1
*41	*61	Card Number Start (bit)	49	14	10	10	17	17	15	0	1	24
*42	*62	Card Number length (bits)	16	14	16	16	16	16	20	0	16	14
*43	*63	Site Code Start (bit)	33	1	2	2	9	1	0	0	17	8
*44	*64	Site Code length (bits)	16	13	8	8	8	16	0	0	16	14
*45	*65	Total Bit Count ($0=$ no check)	64	27	26	26	32	32	35	0	36	37
*46	*66	Card Number Digits Use	5	4	4	5	5	5	8	0	4	4
*47	*67	Site Code Digits Use	3	4	4	3	3	3	0	0	4	4
*48		Even Parity Length (bits) $0 \text { = None }$	0	0	12	12	0	0	0	0	0	0
*49	*69	Odd Parity Length (bits) $0 \text { = None }$	0	0	12	12	0	0	34	0	0	0
*50	*70	Prefix Code Start (bit)	0	0	0	0	0	0	3	0	33	0
*51	*71	Prefix Code length (bits)	0	0	0	0	0	0	12	0	4	0
*52	*72	Prefix Code Digits	0	0	0	0	0	0	4	0	0	0
*53	*73	Even Parity Start (0 = MSB)	0	0	0	0	0	0	0	0	0	0
*54	*74	Odd Parity End ($0=$ LSB)	0	0	0	0	0	0	35	0	0	0
*56	*76	Prefix Code 0000 to 9999	0	0	0	0	0		$\begin{aligned} & 12 \\ & 34 \end{aligned}$	0	4	0

Notes:

- Tech 15 Requires firmware 4.33 and above
- Tech 16 Required firmware 4.54 and above

Progeny

Function		Clock \& Data Description	¢			$\begin{aligned} & \text { Q } \\ & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \infty \end{aligned}$			$\underset{\text { س }}{\text { ய }}$	$\begin{aligned} & \text { ㅡㅡㄹ } \\ & \text { m } \end{aligned}$	๒	$\frac{0}{\mathrm{o}}$	
			0	9	10	11	12						
*40	*60	$2=C \& D, 3=P 4$	3	2	2	2	2	2	2	2	2	2	2
*41	*61	Site Code Digit 4	0	5	50	7	50	6	3	55	4	2	7
*42	*62	Site Code Digit 3	0	6	50	7	50	6	3	55	4	2	7
*43	*63	Site Code Digit 2	0	7	7	6	50	7	2	55	5	3	6
*44	*64	Site Code Digit 1	0	8	8	5	51	8	55	51	6	4	5
*45	*65	Digit Count (0 = no check)	0	0	0	0	16	0	0	0	0	0	0
*46	*66	Card Number Digit 4	0	1	1	4	1	9	12	4	7	7	4
*47	*67	Card Number Digit 3	0	2	2	3	2	10	11	3	8	8	3
*48	*68	Card Number Digit 2	0	3	3	2	3	11	10	2	9	9	2
*49	*69	Card Number Digit 1	0	4	4	1	4	12	9	1	10	10	1
*50	*70	Prefix Code Digit 4	0	50	50	50	50	50	50	50	50	50	12
*51	*71	Prefix Code Digit 3	0	50	50	50	50	50	50	50	50	50	11
*52	*72	Prefix Code Digit 2	0	50	50	50	50	50	50	50	50	50	10
*53	*73	Prefix Code Digit 1	0	50	50	50	50	50	50	50	50	50	9
*54	*74	"Read from" $0=$ Left, 1 = Right	0	0	0	1	0	1	1	1	0	0	1
*56	*76	Prefix Code 0000 to 9999	0		0	0	0	0	0	0	0	0	1234

Custom Format

Interface Type

When sent from Doors 7.02 omits to send $40 \& 45$. So Eng 40 can be used to select the interface type:
1 = Wiegand
2 = Clock \& Data
$3=P 4$
Engineer function 45 sets the number of bits to be expected ($0=$ No check).

Prefix Code

If the template in question requires a "Prefix Code" to be checked, the value entered here will be used to do that check. It can be any number from 0001 to 9999 . All cards presented to this reader interface will be expected to have this prefix. If it does not, it will be reported as "Unknown" and no access granted. If the Prefix Code is set to 0000 then the check is not made.

The prefix code is not displayed on the software screen.

Document Number:	MAN0034
Firmware Version Number:	PSU: 3.24 and later P4: 4.55 and later
EMC \& LV Certificate Number:	
WEEE Certificate Number:	WEE/JG2915VS
© Copyright BSB Electronics Ltd T/A Progeny Access Control	
2014, all rights reserved.	

